
Team 302
Software Design Principles

WET vs. DRY Principle
DRY == Don’t Repeat Yourself

WET == Write Everything Twice

 DRY is good because that means there is a
single place responsible for a task as opposed
to being spread out. Be lazy by putting things
in one place and write it once.

 WET is bad because that means if something
changes, now you have to change multiple
places.

Team302 Software Design Principles

SOLID Principle
Stands for:

 Single Responsibility Principle

 Open/Closed Principle

 Liskov Substitution Principle

 Interface Segregation Principle

 Dependency Inversion Principle

Team302 Software Design Principles

Single Responsibility Principle
A class should do only one thing (AND DO IT WELL!!)

 We all like the swiss army knife or multi-purpose tool, but
do they really have the best screwdriver? We’d rather have
a toolbox full of the best tools instead of one tool that does
everything (think of each tool as a class).

 KISS (Keep It Super Simple) Principle

 Should be easy to document the class without using
conditional terms

Team302 Software Design Principles

Single Responsibility
Separate classes to:

• Read Joystick inputs

• Set Chassis Motors

As opposed to one class that reads the Joystick
inputs and sets the Chassis Motor Speeds

Team302 Software Design Principles

Open/Closed Principle
Software should be open for extensions but closed for
modifications

 Don’t Ask/Don’t Tell

 Attributes are private

 Accessors/mutators (getters/setters) are only written
when needed (try to avoid as much as possible)

 Design code such that as more functionality is added
existing functionality doesn’t have to change

 Use Interfaces instead of concrete implementation

Team302 Software Design Principles

Open/Closed Principle
Shooter Aiming Example

 Creating an interface for setting the angle that doesn’t assume any
particular sensor type (potentiometer, encoder, limit switch, etc.)

Chassis Drive Class: Control Drive Motors Example

 Don’t have Getters and Setters for each motor

 Instead have functional interfaces that don’t have to change if the number of
drive motors changes

Team302 Software Design Principles

Liskov Substitution Principle
Objects should be replaceable with instances of their
subtypes without altering the correctness of the program
(Design By Contract)

Example:

If you had a program that dealt with shapes and one of the shapes was a
rectangle. Assume there were methods to set its length and width. If you added
a square and decided it was a subclass of a rectangle because the area,
perimeter, etc. were calculated the same way, you would violate this. Why?

Team302 Software Design Principles

Liskov Substitution Principle
CalcArea()

{

Rectangle* square = new Square();

square->SetLength(2.0) ;

square->SetWidth(5.0);

printf(“Area = %d \n”, square->CalculateArea());

}

Area = 25.0, so setting the length was effectively ignored.

You could leverage the area/perimeter similarities and subclass if you didn’t

have SetLength and SetWidth methods, but rather set these values as part of

the creator.

Team302 Software Design Principles

Interface Segregation Principle
Many client specific interfaces are better than one general purpose interface

 Smaller is better than bigger

 Only give access to what is needed

 Classes don’t need to know about what they don’t use

Team302 Software Design Principles

Interface Segregation Principle
Example:

Supposed you wanted only one class to depend on RobotMap.h, so you created
one class (MotorsAndSensors.cpp) to manage all of the motors and sensors.

Now several problem arise:

1. The drive subsystem doesn’t need/nor want to know about the shooter
motors/sensors nor the intake motors/sensors

2. Method names become longer in order to distinguish between the different
subsystems (e.g. SetAngle, for instance, wouldn’t be clear if it was the
shooter or the intake)

3. If climbing arms are added, a lot more needs to be recompiled/linked
because the MotorsAndSensors class needs to add new methods to deal
with the arms

Team302 Software Design Principles

Interface Segregation Principle
A couple of Solutions:

1. Create multiple classes, so the interface is smaller

2. Create interfaces and have the MotorsAndSensors implement each of these
interfaces (IDrive, IIntake, IShooter, etc.). The other classes refer to the
specific interface it needs.

Best Solution:

Create the specific interfaces and implement a concrete class that implements
each.

Then, if for instance, the shooter changes or a new prototype is evaluated, you
could just create new concrete class that implements the IShooter interface.

Team302 Software Design Principles

Dependency Inversion Principle
Depend on Abstractions, not specific concrete implementations

 Decouple classes ⇒ Use interfaces

 Logic interacts with the interface not the concrete implementations

 This allows a concrete implementation to be added that uses the same
interface to work without changing everything the deals with it.

What does this mean??

Team302 Software Design Principles

Dependency Inversion Principle
1. The shooter angle is determined using a potentiometer, since this is just an

analog sensor in the WPILIB, you decide to embed this logic into your class
as well as the PID logic to get to specific angles.

2. If the potentiometer gets swapped out for an encoder many things change.
What if the encoder change was short-term (e.g. at a competition we only
had an encoder, but we want to swap back to the potentiometer between
the competitions).

3. If the Angle sensor is an interface (IAngle) and the shooter aiming code
(including the PID) only deals with the IAngle interface, then there could be
a potentiometer class and an encoder class that both implement the IAngle
interface and swapping the actual sensor would have minimal impact.

Team302 Software Design Principles

