

## **Robust Engineering**

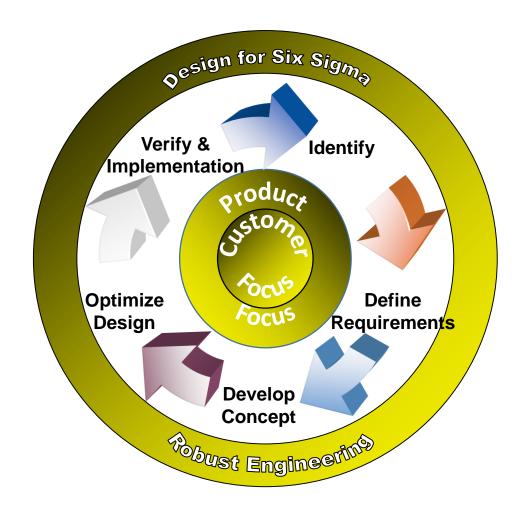
Identify

What is the decision, why is it important?

Define

• Define Decision Criteria, what does it take to be a winner?

Develop


Do I have the best design Concept?

**Optimize** 

 Is the performance acceptable and consistent for all operating conditions?

Verify

 Does it's performance achieve all objectives?





# Getting to a single GREAT Concept



- Develop Concepts
- Use Creativity Techniques

Evaluate

- Compare & Contrast Ideas
- Understand Why There are Differences

Hybrid

- Evolve Concepts
- Keep the Good / Discard the Bad

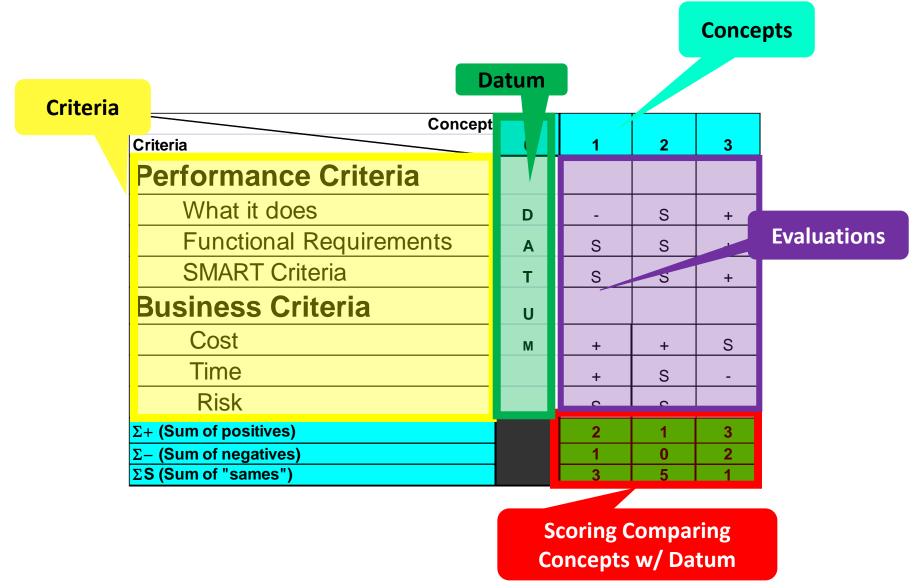
Select

- Select the Best Concept
- Understand Why it is the Best Concept



## What is a Functional Measure?

- A Functional Measure describes what the system does.
- It is not a description of what the system is.
- A functional measure is a measure of system performance.
- Be careful to focus on a <u>measure of performance</u> (e.g. how much force) and not how to achieve the performance (e.g. use a spring).
- Use **S.M.A.R.T.** criteria to assist in selecting or evaluating functional measures
  - Specific unambiguous (clear) outcome or deliverable.
  - Measurable impact on customer (result) is clear and measurable.
  - Actionable can be accomplished by you and your team with available (or attainable) resources.
  - Relevant clearly moves toward achieving customer satisfaction.
  - **Time Bound** can be measured during development when results can affect the design solution before release




## Criteria for the Evaluation

- Identify Evaluation Criteria
  - How well does it perform its intended function?
    - Use the Functional Requirements from Define Requirements
- You may choose to rank order the criteria
  - How well it performs is most important
  - do not weight the criteria
- Reach consensus on the criteria



## **Pugh Concept Template**





#### **Evaluation Criteria**

Performance Criteria from Defined Requirements

| Concept                       |   |   |   |   |
|-------------------------------|---|---|---|---|
| - Thoria                      | 0 | 1 | 2 | 3 |
| Performance Criteria          |   |   |   |   |
| What it does                  | D | - | S | + |
| Functional Requirements       | Α | S | S | + |
| SMART Criteria                | Т | S | S | + |
| Business Criteria             | U |   |   |   |
| Cost                          | М | + | + | S |
| Time                          |   | + | S | - |
| Risk                          |   | S | S | - |
| Σ+ (Sum of positives)         |   | 2 | 1 | 3 |
| $\Sigma$ – (Sum of negatives) |   | 1 | 0 | 2 |
| ΣS (Sum of "sames")           |   | 3 | 5 | 1 |

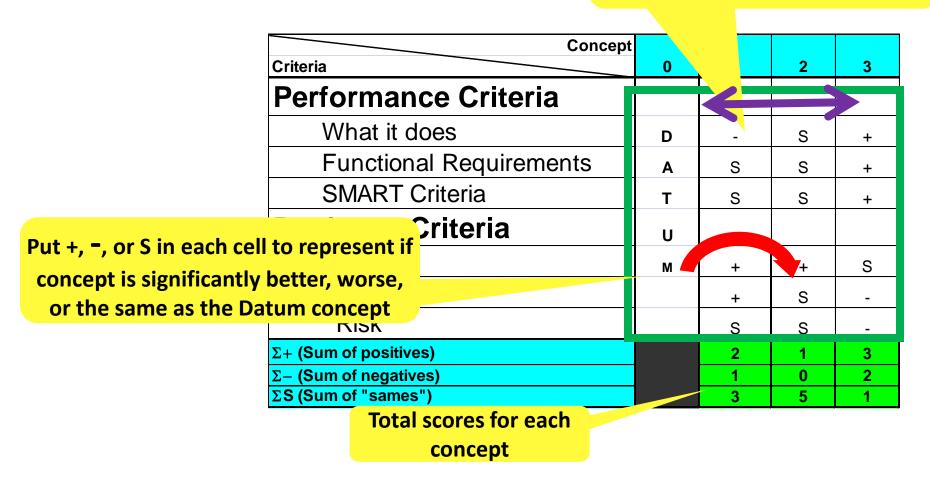
If you have the wrong criteria, will you be guided to the right decision?



#### **Understand the Alternatives**

#### Alternatives

| Concep                        |   |   |   |   |
|-------------------------------|---|---|---|---|
| Criteria                      | 0 | 1 | 2 | 3 |
| Performance Criteria          |   |   |   |   |
| What it does                  | D | • | S | + |
| Functional Requirements       | Α | S | S | + |
| SMART Criteria                | Т | S | S | + |
| <b>Business Criteria</b>      | U |   |   |   |
| Cost                          | M | + | + | S |
| Time                          |   | + | S | - |
| Risk                          |   | S | S | - |
| $\Sigma$ + (Sum of positives) |   | 2 | 1 | 3 |
| Σ- (Sum of negatives)         |   | 1 | 0 | 2 |
| ΣS (Sum of "sames")           |   | 3 | 5 | 1 |


Ensure the team understands each concept in detail.

Use supporting sketches and words.



**Evaluation** 

Work from left to right evaluating each concept on a given criteria





## **Evaluation: Fact or Opinion?**

# Fact or Opinion?

#### **Fact or Opinion?**

- Fact is more important than opinion.
- Document which entries are fact different than those that are opinion.
- What would it take to go from opinion to fact?
  - Think Quick Tests.



### First Run - Analysis

- The +'s represent concept strengths and the -'s represent weaknesses.
- The scores for each concept are intended as guides to focus your attention on the development of additional and better concepts.
- Identify the concept(s) that have the most +'s and fewest -'s.
- Look for ways to address the weaknesses. How can you pull strengths from other concepts to change the —'s into S's or +'s.
- As you make changes to convert a weakness, evaluate the impact on other criteria.



## Use Pugh Matrix to Create Hybrid Designs

- Use the Pugh analysis to make stronger concepts than the original alternatives.
- Look for areas where concepts differ (+/-/S)
- Determine why the difference exists.
- Create hybrid designs that incorporate the strong features (+'s) and eliminate weaknesses (-'s) in each design.
- Work to eliminate all negatives (-'s)

The Pugh Concept Selection Process usually leads to blended concepts that are substantially better than any of the initial alternatives.



Generate Better Alternatives by Understanding Strengths & Weaknesses

| Concept                       |   |   |   |   |   |
|-------------------------------|---|---|---|---|---|
| Criteria                      | 0 | 1 | 2 | 3 | 4 |
| Performance Criteria          |   |   |   |   |   |
| What it does                  | D | - | S | + | + |
| Functional Requirements       | Α | S | S | + | S |
| SMART Criteria                | Т | S | S | + | + |
| <b>Business Criteria</b>      | U |   |   |   |   |
| Cost                          | M | + | + | S | S |
| Time                          |   | + | S | - | S |
| Risk                          |   | S | S | _ | S |
| $\Sigma$ + (Sum of positives) |   | 2 | 1 | 3 | 2 |
| Σ– (Sum of negatives)         |   | 1 | 0 | 2 | 0 |
| ΣS (Sum of "sames")           |   | 3 | 5 | 1 | 4 |

Hybrid
Concept 4
uses the
best of
Concepts
2 & 3



## Low Performance is an Opportunity for Optimization

| Concept                       |   |   |   |   |   |
|-------------------------------|---|---|---|---|---|
| Criteria                      | 0 | 1 | 2 | 3 | 4 |
| Performance Criteria          |   |   |   |   |   |
| What it does                  | D | 1 | S | + | + |
| Functional Requirements       | Α | S | S | + | S |
| SMART Criteria                | Т | S | S | + | + |
| <b>Business Criteria</b>      | U |   |   |   |   |
| Cost                          | М | + | + | S | S |
| Time                          |   | + | S | - | S |
| Risk                          |   | S | S | - | S |
| $\Sigma$ + (Sum of positives) |   | 2 | 1 | 3 | 2 |
| Σ– (Sum of negatives)         |   | 1 | 0 | 2 | 0 |
| ΣS (Sum of "sames")           |   | 3 | 5 | 1 | 4 |

Improving Concept 4 will make it a real winner!



## **Pugh Confirmation Run**

A critical step in the Pugh process is to confirm the winning design is truly the winner.

- 1. Make the winning design the new datum.
- 2. Assess the strengths and weaknesses of each concept relative to the apparent winner (the new datum)
  - If the datum is still the best OK
  - If the datum is no longer the best—you have a new winner. Reconfirm by going to step 1.
  - Create new hybrid designs using what you learned in confirmation.
  - Repeat as necessary until a clear winner emerges.

Do not skip the confirmation run!



# Pugh Analysis

#### Problems with a Weak Datum

| Concept                    | lana aut          |   |   |   |   |   |
|----------------------------|-------------------|---|---|---|---|---|
| Criteria                   | Import.<br>Rating | 0 | 1 | 2 | 3 | 4 |
| Performs intended function | 1                 |   | + | + | + | + |
| Opening Efforts            | 3                 | D | + | S | S | S |
| Closing Efforts            | 3                 | Α | + | S | S | S |
| Smoothness (Max-Min)       | 1                 | Т | + | + | + | + |
| Linearity                  | 1                 | U | + | + | + | S |
| Piece Cost                 | 2                 | М | + | + | + | S |
| Investment                 | 2                 |   | + | + | + | + |
| Timing                     | 2                 |   | + | S | S | + |
| Σ+                         |                   |   | 8 | 5 | 5 | 4 |
| Σ–                         |                   |   | 0 | 0 | 0 | 0 |
| ΣS                         |                   |   | 0 | 3 | 3 | 4 |

Concept 1 appears to be a clear winner—confirmation run?



# Pugh Analysis

#### Confirm with New Datum

| Concept                    |                   |   |   |   |   |
|----------------------------|-------------------|---|---|---|---|
| Criteria                   | Import.<br>Rating | 1 | 2 | 3 | 4 |
| Performs intended function | 1                 |   | + | + | S |
| Opening Efforts            | 3                 | D | 1 | - | - |
| Closing Efforts            | 3                 | Α | • | - | - |
| Smoothness (Max-Min)       | 1                 | Т | + | + | S |
| Linearity                  | 1                 | U | + | + | - |
| Piece Cost                 | 2                 | М | + | + | - |
| Investment                 | 2                 |   | + | + | S |
| Timing                     | 2                 |   | 1 | - | S |
| Σ+                         |                   |   | 5 | 5 | 0 |
| Σ–                         |                   |   | 3 | 3 | 4 |
| ΣS                         |                   |   | 0 | 0 | 4 |

Evaluate Concepts 2-4 against Concept 1 – Still think Concept 1 is the winner?

The previous Datum was poor and masked the best concept.